MANTA RAY OF HOPE • 2011 REPORT
THE GLOBAL THREAT TO MANTA AND MOBULA RAYS
SHAWN HEINRICH, MARY O’MALLEY, HANNAH MEDD, PAUL HILTON

WITH SUPPORT FROM THE SILVERCREST FOUNDATION, HROTHGAR INVESTMENTS, AND PRIVATE DONORS
The Manta Ray of Hope project brings together a unique set of skills and knowledge to enable the production of this comprehensive report on the conservation status of manta and mobula rays. The team includes top field investigators, leading scientists and researchers. The project was founded by Sharks Savers and WildAid, with support from the Silvercrest Foundation, Hrothgar Investments, and private donors.

REPORT WRITERS
Shawn Heinrichs, Mary O’Malley, Hannah Medd, and Paul Hilton

PROJECT TEAM
Shawn Heinrichs – Project Lead, Investigator, Report Writer
Paul Hilton – Lead Investigator, Report Writer
Mary O’Malley (Shark Savers) – Project Manager, Report Writer
Hannah Medd (Shark Savers) – Marine Biologist, Report Writer
Guy Stevens (Manta Trust) – Lead Scientific Advisor
Cassandra Brooks – Contributing Editor
John Weller – Graphics and Design

Local Investigators
Peter Knights (Executive Director of WildAid)
Michael Skeateley (Executive Director of Shark Savers)

SCIENTIFIC ADVISORY TEAM
MSc Andres Baquero
Dr. Mark Deakos
Dr. Heidi Dewar
Dr. Mark Erdmann
Dr. Rachel Graham
Mark Harding
Mark Harding
Dr. Andrea Marshall
Frazier McGregor
Mark Harding
Dr. Mahmood Shivji
Guy Stevens
Dr. Giuseppe Notarbartolo di Sciana
Dr. Kathy Townsend
Dr. William (Will) White

CONTRIBUTORS
Andres Baquero
Lydie Couturier
Daniel Fernando
Mark Harding
Shawn Heinrichs
Paul Hilton
Peter Knights
Dr. Andrea Marshall
Hannah Medd
Mary O’Malley
Briana Rivera
Naneng Setiasih
Guy Stevens

SPECIAL THANKS
We would like to offer a special thank you to all the individuals and organizations contributing to this project. Without your valuable support, this project would not have been possible. We pride ourselves on our photography. All photographs are copyrighted. Credits on page 38.

AUTHORS’ NOTE
This report is intended to provide all available data, including peer reviewed and published science, primary research, and unpublished studies. Data based on unpublished studies and primary research have been reviewed by the scientific advisory team, and are considered the best available at this time.
EXECUTIVE SUMMARY

Manta and mobula rays span the tropics of the world and are among the most captivating and charismatic of marine species. However, their survival is severely threatened by growing fisheries pressure driven by demand for the gill rakers that the animals use to filter feed. This report is the first global assessment of what is currently known about manta and mobula biology, the threats they face, the fisheries and trade that target them, non-consumptive and sustainable uses for communities to profit from them, current conservation measures and urgent steps recommended to prevent regional extinctions.

Global manta and mobula ray populations are currently unknown. Even the leading scientists interviewed for this report were not prepared to offer estimates on global populations for any species. Likewise, many questions remain unanswered regarding their biology and behavior. What is known, however, is that these species are slow to mature (8-10 years), are long-lived (40 years+), and reproduce very slowly. A manta ray will give birth to as few as a single pup every two to five years. By comparison, the Great White Shark, a highly vulnerable species protected under Appendix II of CITES, may produce more young in one litter than a manta ray will in her entire lifetime. Further underscoring the vulnerability of manta rays, scientists believe that specific regional populations may be genetically different from other populations.

These characteristics make manta and mobula rays extremely vulnerable to overfishing, regional depletion and local extinction. While they are also taken as bycatch in certain fisheries, these rays are subject to significant directed fishing pressure throughout their range. Indonesia, Sri Lanka and India have the largest documented fisheries, with targeted fisheries also reported in Peru, Mexico, Thailand, China, Mozambique, Ghana, and other locations. Total annual documented global landings are ~3,400 mantas (M. birostris only) and ~94,000 mobulas (all species). Unreported and subsistence fisheries will mean true landings are likely much higher.

While local subsistence fisheries for meat have been carried out for centuries, in the past decade the growing markets for gill rakers have significantly increased fishing effort. A mature Manta birostris (oceanic manta ray) can yield up to 7 kilos of dried gills that retail for as much as US$500 per kilo in a market in China. Established shark fin trade networks have exploited the opportunity to profit from gill rakers, especially as shark populations have declined.

Historically both fisheries and markets have been largely undocumented and completely unregulated. Consequently many of these fisheries are in rapid decline. The past decade has seen significant declines in both number and size of manta rays landed in primary fishery sites in Indonesia, Mozambique, India and Thailand. M. birostris has all but disappeared from the Sea of Cortez. Fishermen in the Philippines reported a 50% decline in manta ray landings from the 1960s to 1990s, and in Sri Lanka, fishermen also reported declines in catches.

Manta and mobula gill rakers are promoted as a cure for a wide array of ailments from chickenpox to cancer in some Chinese communities. Gill rakers are sold primarily in Chinese markets and directly marketed by importers from the hub of the trade in Guangzhou, Southern China. Guangzhou trade is as much as 99% of the global market. Market analysis suggests total annual gill raker trade volume in excess of 61,000 kg (and perhaps as high as 80,000 kg) with an estimated value of US$11.3 million per year.

Despite the marketing, a number of Traditional Chinese Medicine (TCM) practitioners stated that gill rakers are not a legitimate acknowledged component of mainstream TCM. No interviewees were able to locate any references in TCM texts, and one practitioner confirmed that gill rakers are not included in the official TCM manual. Several interviewees admitted belief that gill rakers were not effective and suggested that many alternatives were available. No vendors offered any evidence of efficacy in the product.
Though the outlook may appear grim, manta and mobula ray tourism offers sustainable and profitable alternatives. The value of manta ray tourism based on data gathered from only seven sites is estimated to be US$27 million in direct tour operator revenue, and US$50 million per year when associated tourism expenditures are included. The many other current manta and mobula tourism sites around the world are expected to yield a further US$50 million per year, and other aggregation sites have yet to be exploited for tourism. A total estimated annual tourism value of over US$100 million per year compares favorably to the estimated market value of US$11 million per year for the global gill raker trade.

Populations are currently stable, at best, around tourism sites or within marine reserves where manta rays are protected. Regionally, several nations and states have passed laws specifically prohibiting the landings of manta and mobula rays. The United Nations’ Convention of Migratory Species (CMS) recently listed the giant manta ray (M. birostris) as a species of international concern, but there are no binding international protections for any manta or mobula species, nor are they currently regulated by the Convention on International Trade in Endangered Species (CITES).

The general public, policy makers, and even those in the ocean conservation field are largely unaware of the growing trade in gill rakers and its impact on manta and mobula ray populations throughout the world. If action is not taken immediately, these rays face imminent regional extirpations and broad-scale global depletion.

We recommend that range states immediately place a moratorium on all directed manta and mobula fisheries, and mandate measures to reduce bycatch until proper population studies are conducted. We recommend further that China and other importing/consuming countries place and maintain moratoriums on imports and sales of gill rakers, unless it can be proven that such imports are not damaging ray populations.

BY THE NUMBERS

- **US$100 million**: The expected global tourism value of manta and mobula rays
- **US$811 million**: The estimated global value of the gill raker trade
- **US$1 million**: The estimated tourism value of a single manta ray over its lifetime, ALIVE
- **US$40 – 500**: The estimated fisheries value of a single manta ray, DEAD
- **94,000 & 3,400**: The estimated global landings of mobula and manta rays (respectively) documented in fisheries
- **600**: The number of *Manta birostris* identified in the largest documented aggregation site
- **16**: The maximum number of pups a manta ray produces over her LIFETIME
- **14**: The maximum number of pups the vulnerable Great White Shark produces in one litter
- **Zero**: Locations where manta or mobula rays have been fished sustainably

AT A GLANCE

AT A GLANCE
KEY RECOMMENDATIONS

Trade Moratoriums – Given the difficulty in regulating fisheries and lack of resources in most mobuild range states, the single measure that would reduce pressure on mobuilds would be an immediate moratorium on import and sales of gill rakers. With the vast majority of the trade centered in Guangzhou, China could take a global conservation leadership role with minimal economic impact (US$ 11 Million p.a.) by enacting a moratorium on the possession, sales and import of manta and mobula gill rakers. Other governments considering legislation to protect sharks, including shark fin trade bans, should include manta and mobula rays in these bills. Including this language will prevent the gill raker trade from diversifying to new areas.

Consumer Education – To support a moratorium consumer education campaigns should inform consumers of the unproven nature of gill raker tonic claims, the extreme vulnerability of these animals, and the long-term sustainable value of keeping them alive.

International Protections - Because of the broad geographic range of most mobuild species, international measures to control trade, directed fisheries and bycatch are vital to the effective protection of manta and mobula rays. Range state countries should propose all Mobuilds for listing under CITES Appendix I or Appendix II. In addition, all Regional Fishery Management Organizations (RFMO’s) should enact “no retention” policies for mobuilds, along with mandatory bycatch reduction measures.

Range State Protections – Though certain fisheries will likely be reduced by a gill raker trade moratorium in China/Hong Kong/Singapore, range state regulations prohibiting the killing and trade of manta and mobula rays must be pursued. Protection initiatives must be focused initially on the largest known fisheries, including Indonesia, Sri Lanka, India and Peru, as well as Mozambique and other African countries. Protection of critical habitats should be a primary focus, with seasonal regulations restricting all harmful fishing practices in known aggregation areas. The recent CMS Appendix I and II listings for M. birostris should provide impetus to member countries, of which twenty-four are identified as M. birostris range states, to enact strong measures to protect manta rays and their critical habitats.

Eco-Tourism and Other Economic Alternatives - Development of economic alternatives by governments and NGOs will be vital in areas where manta and mobula rays are hunted, (e.g. Sri Lanka and Indonesia). The potential for long-term sustainable income through responsible dive eco-tourism, can provide a strong incentive for coastal communities to protect manta and mobula rays. Eco-tourism development should include appropriate legislation and marketplace organization to ensure that the rays will not be negatively impacted by uncontrolled boat and tourist traffic.

Enforcement - Enforcement strategies for all protective measures, in addition to regular monitoring of fish markets in key areas, must be developed in collaboration with fisheries departments and local partners to track effectiveness of measures and keep poachers from exploiting protected areas.

AT A GLANCE
INTRODUCTION TO MOBULID RAYS

Taxonomy, Morphology and Distributions: The group of cartilaginous fish in the family Mobulidae (Mobulid rays) consists of two genera, Manta and Mobula, with two and nine species respectively. All mobulid rays have diamond-shaped bodies, wing-like pectoral fins used for propulsion, and five pairs of gill slits. They usually inhabit pelagic zones (reef manta), and small fish, their primary food sources.

The genus Manta includes the larger Manta birostris (oceanic manta), the smaller Manta alfredi (reef manta), and a possible third species, Manta, cf. birostris. Both M. birostris and M. alfredi are circumglobal in overall range, and overlap in some locations. M. cf. birostris, is likely limited to the Gulf of Mexico and Western Caribbean. Manta birostris has a maximum wingspan (disk width, or DW) of seven to nine meters. Manta alfredi has a maximum 4 to 5 meter disk width, and usually occupies tropical areas.

The nine Mobula species range in size from the largest, Mobula munkiana, which can reach 5.2 meters DW, to the smallest, Mobula megalorhyncha, which averages only 1.1 meters DW. Mobulas can be found in temperate and tropical waters worldwide (see Table 1 and Figure 1). Some Mobula species are range restricted, such as Mobula mobular and Mobula megalorhyncha, found only in the Indian and Western Pacific Oceans respectively. Other species, such as Mobula tarapacana and Mobula danae, are thought to be circumglobal.

Since information on the distribution of this genus is based on sparse records and misidentification is common, the estimated ranges of individual species, and even some species classifications, will likely change in the coming years.

Population Estimates (see Table 2): Overall population sizes for mobulid species are not known, but all species for which data exist are classified as “near threatened,” “vulnerable,” or “endangered” by the IUCN. A great deal of data has been collected on the two manta species based on long term studies in key aggregation sites. M. birostris is believed to have regional subpopulations of as few as one to 1000 individuals. M. birostris will cross open ocean within a region. M. alfredi is believed to have highly localized subpopulations of 100 to 2000 individuals. M. alfredi are much less likely to cross open ocean within a region, and thus it is possible to have genetically distinct stocks in close geographic ranges.

Brain Size and Aneuploidy Evidence of Intelligence: Recent research has revealed that manta and mobula rays have the highest brain mass to body mass ratio of all chondrichthyans (comparable to some birds and mammals). They exhibit high maneuverability, and increased social and cognitive abilities. Diverse sites numerous examples of manta rays cooperating and accepting help when entangled in lines, and many report that injured manta rays even seem to seek assistance.

Reproduction and Longevity: All mobulids are aplacental, viviparous species, meaning that they give birth to fully developed live young, and typically bear only a single pup with each pregnancy. While the lifespan and age at sexual maturity are not yet known for many mobulid species, long-term studies of M. alfredi populations in various locations indicate a life history incompatible with targeted commercial fishing. For example, female M. alfredi are believed to reach maturity at 8 to 10 years, however female M. alfredi in an extensively studied population in the Maldives showed no mating scars and did not become pregnant for a number of years after reaching maturity size. These observations indicate that female M. alfredi in some subpopulations may not mate until an age of 15 years or more. M. alfredi near a Mozambique study site and in Maui has had a biennial reproductive period with some females pupping in consecutive years, while in the Maldives, the reproductive cycle appears to be significantly slower, with female M. alfredi giving birth on average to only one pup every five years. M. alfredi have been confirmed to live at least 30 years and both manta species are believed to live 40 years and possibly longer.

Starting in 2009, an international team has been conducting annual surveys on M. birostris in the Maldives. For the first time, a series of estimates of the population size and trend of this species has been produced. The team has been able to estimate subpopulations in the Maldives and Komodo, Indonesia, with trends for both regions becoming decreasing. Population estimates have also been made for M. alfredi in the South Pacific, with the population in the Fakarava Atoll, Tuamotu Archipelago, French Polynesia being estimated at 175 to 295 individuals, and a trend of decreasing. The team has also estimated a population of 1000 individuals for the M. alfredi population in the waters of the Eastern Pacific Ocean. A recent survey of M. alfredi in the Gulf of Thailand estimated a population of 680 individuals and a trend of decreasing.

Population size estimates are important for management and conservation planning. They help to determine the number of individuals that can be harvested and the population size that can withstand such harvest. They also help to identify areas that are important for the conservation of these species. The team has made a number of recommendations for the conservation of M. birostris, including the establishment of protective measures in key aggregation sites, monitoring of the species to track population trends, and the development of a management plan for the species.

The results of the surveys have been used to inform conservation efforts, including the establishment of protected areas for M. birostris, such as the Protected Areas for Manta Rays (PARs) program. The PARs program is a collaborative effort between government agencies, conservation organizations, and local communities to protect manta rays in key aggregation areas. The PARs program has been successful in increasing the conservation status of M. birostris, and other species of interest, in key areas around the world.

In conclusion, the results of the surveys have provided valuable information on the status and trends of M. birostris, and other mobulid species. The team’s estimates of population size and trend have helped to inform conservation efforts, including the establishment of protected areas and the development of management plans. The results of the surveys have also helped to raise awareness of the importance of these species and the need for continued conservation efforts.
FIGURE I. ESTIMATED MOBULID DISTRIBUTIONS

Mobula and *M. birostris* distributions derived from IUCN Redlist. *M. alfredi* populations and *M. birostris* aggregations derived from Marshall et. al 2009
BIOLICAL VULNERABILITY

Manta and mobula rays have biological and behavioral characteristics that greatly increase their vulnerability to overfishing.

Slow Reproduction: A female M. alfredi may not mate until 10 years of age, gives birth to one pup on average every 2-3 years over an estimated lifespan of 40 years or more, and therefore produces only a handful of pups in her lifetime. If she avoids fisheries and other threats, and survives to her maximum age, she may give birth to a maximum of 10-15 pups over her lifetime. In contrast, even the Great White Shark (Carcharodon carcharias), which is listed under CITES Appendix II and gives birth to an average 7-14 pups every two to three years, has a greater fecundity. A Great White Shark may produce as many pups in one litter as a manta ray does over its entire lifetime.

Genetically Isolated Local Stocks: Some mantas and mobulas will aggregate in a predictable coastal area to feed and visit cleaning stations, making these populations vulnerable to localized depletion or even extirpation by local fishermen. They are often found feeding at the surface, making them easy to capture by net or harpoon. Some local populations may not mate until 15 years of age, giving birth to one pup on average every two to three years over an estimated lifespan of 40 years or more, and therefore producing only a handful of pups in her lifetime. If she avoids fisheries and other threats, and survives to her maximum age, she may give birth to a maximum of 10-15 pups over her lifetime. In contrast, even the Great White Shark (Carcharodon carcharias), which is listed under CITES Appendix II and gives birth to an average 7-14 pups every two to three years, has a greater fecundity. A Great White Shark may produce as many pups in one litter as a manta ray does over its entire lifetime.

Highly Migratory Behavior: Other more mobile rays that cross open ocean, like M. birostris, can also be vulnerable to multiple fisheries – both targets and bycatch – in the high seas between their aggregation sites.

EVIDENCE OF DEPLETION

Declines of M. birostris have been reported at known aggregation sites throughout their migratory range. For example, M. alfredi is believed to have small, genetically independent, island-associated stocks. With little exchange between members of neighboring stocks, a fishery could deplete a single stock quite rapidly with little chance of recovery.

Genetically Isolated Local Stocks: Some mobulids are extremely vulnerable to even local fisheries. For example, M. alfredi is believed to have small, genetically independent, island-associated stocks. With little exchange between members of neighboring stocks, a fishery could deplete a single stock quite rapidly with little chance of recovery.

Highly Migratory Behavior: Other mobile rays that cross open ocean, like M. birostris, can also be vulnerable to multiple fisheries – both targets and bycatch – in the high seas between their aggregation sites.

THREATS

Fisheries: By far the greatest threat to manta and mobula rays comes from fisheries, both directed and incidental (bycatch).

Habitat Destruction: Coral reef degradation could negatively impact mantas and mobula rays by disrupting feeding aggregations, cleaning station behavior, or disrupting reproductive behavior.

Climate Change: Most mobulid rays depend on plankton as their primary food source. As changing sea temperatures disrupt the phytoplankton’s natural ecological cycles, mantas and mobula rays may struggle to find adequate food supplies.

Marine Debris: Many manta and mobula rays die from marine debris, phantom nets, plastics and pollution from vessels. Fishing line entanglement, and resulting amputation or damage to cephalic fins, can also impair the ray’s ability to feed. Ingestion of plastic debris has been extensively documented to result in a range of health problems, injuries and death in several marine species, and may also pose a significant threat to mantas and mobula rays.

Boat Strikes and Entanglement: Manta and mobula rays often fall victim to boat strikes as they pass through regions of heavy maritime traffic. Manta rays can also become entangled in mooring and boat anchor lines. When these lines get caught around the cephalic fins and head, they trap the manta ray and cause it to drown.

Unregulated tourism: As aggregation sites become tourist attractions, unregulated interactions (i.e. a high number of boats in the vicinity and a large volume of people in the water close to or touching the rays) may cause undue stress.

Captivity: Although few mobulids live in captivity, the unmonitored removal of these species from the wild for the public aquarium trade may negatively impact small and geographically isolated populations.

Natural Predation: Natural predation, primarily from sharks and also killer whales, is not considered to be a leading threat to mobulid rays. Non-fatal injuries from shark bites have been observed on both mantas and mobula rays in several parts of the world, and the impacts of these injuries on long term survival and reproduction are not known.

Boat Strikes and Entanglement: Manta and mobula rays often fall victim to boat strikes as they pass through regions of heavy maritime traffic. Manta rays can also become entangled in mooring and boat anchor lines. When these lines get caught around the cephalic fins and head, they trap the manta ray and cause it to drown.

Unregulated tourism: As aggregation sites become tourist attractions, unregulated interactions (i.e. a high number of boats in the vicinity and a large volume of people in the water close to or touching the rays) may cause undue stress.

Captivity: Although few mobulids live in captivity, the unmonitored removal of these species from the wild for the public aquarium trade may negatively impact small and geographically isolated populations.

Natural Predation: Natural predation, primarily from sharks and also killer whales, is not considered to be a leading threat to mobulid rays. Non-fatal injuries from shark bites have been observed on both mantas and mobula rays in several parts of the world, and the impacts of these injuries on long term survival and reproduction are not known.

Boat Strikes and Entanglement: Manta and mobula rays often fall victim to boat strikes as they pass through regions of heavy maritime traffic. Manta rays can also become entangled in mooring and boat anchor lines. When these lines get caught around the cephalic fins and head, they trap the manta ray and cause it to drown.

Unregulated tourism: As aggregation sites become tourist attractions, unregulated interactions (i.e. a high number of boats in the vicinity and a large volume of people in the water close to or touching the rays) may cause undue stress.

Captivity: Although few mobulids live in captivity, the unmonitored removal of these species from the wild for the public aquarium trade may negatively impact small and geographically isolated populations.

Natural Predation: Natural predation, primarily from sharks and also killer whales, is not considered to be a leading threat to mobulid rays. Non-fatal injuries from shark bites have been observed on both mantas and mobula rays in several parts of the world, and the impacts of these injuries on long term survival and reproduction are not known.
This report examines the extent of fisheries, what is driving these fisheries and the impact on manta and mobula ray populations. Mobulids are both targeted and caught incidentally as “bycatch.”

Bycatch: Thousands of manta and mobula rays are caught “incidentally” as bycatch in industrial and artisanal fisheries throughout the Atlantic, Pacific and Indian Oceans and the Mediterranean Sea. Purse seines, gillnets and longlines, all commonly used in tuna fisheries, are most frequently responsible for manta and mobula bycatch. Unfortunately, the intensive “dolphin safe tuna” conservation campaigns that were intended to reduce dolphin bycatch, increased the bycatch of manta and mobula rays, sharks and many other marine animals. Because mobulid bycatch data is rarely recorded and when recorded is not classified by species, the impact of incidental fishing on manta and mobula ray populations remains largely underestimated and unknown.

Targeted Fisheries: Historically, subsistence fishing for manta and mobula rays occurred in isolated locations with simple gear, restricting the distance and time fishers could travel to hunt. In recent years, however, fishers have begun targeting manta and mobula rays with modern fishing gear while expanding fishing range and season. The emerging market for dried gill rakers is the primary driver of mobulid fisheries. Secondary markets for mobulid meat, cartilage and skins, as well as traditional hunts, also play an important role in the perpetuation of some fisheries. Many bycatch and small subsistence fisheries have transformed into targeted export industries in response to the gill raker trade. Analysis reveals that without the gill raker trade, income from directed fisheries for manta and mobula rays may not even cover the cost of fuel in many range states. Bycatch in both coastal and international high seas fisheries poses a significant threat.

Large declines have been reported following directed fisheries for manta and mobula rays.

KEY FISHERIES FINDINGS

- Manta and mobula rays are subject to significant fishing pressure throughout their key range states. Sri Lanka, India, Indonesia, Peru and China appear to have the largest targeted fisheries. Targeted fisheries have also been reported in Mexico, Thailand, the Philippines, and several locations in Africa, including Mozambique, Ghana, Tanzania, Madagascar, and Somalia, but little data exists as to the extent of many of these fisheries. Anecdotal evidence suggests that even more fisheries likely exist isolated in coastal regions throughout the Atlantic and Pacific.

- The top five manta and mobula ray fishing nations account for more than 95% of all known mobulid landings.

- The market for gill rakers is the primary economic driver of the commercial fisheries. Secondary markets for mobulid meat, cartilage and skins, as well as traditional hunts, also play an important role in the perpetuation of some fisheries.

- Many bycatch and small subsistence fisheries have transformed into targeted export industries in response to the gill raker trade.

- Analysis reveals that without the gill raker trade, income from directed fisheries for manta and mobula rays may not even cover the cost of fuel in many range states.

- Bycatch in both coastal and international high seas fisheries poses a significant threat.

- Large declines have been reported following directed fisheries for manta and mobula rays.

MANTA BIOSTRIS

Directed fisheries in Indonesia, Sri Lanka and India account for the largest share of recorded *M. birostris* mortality (~90%), with annual landings of over 3,000 animals. Global landings are reported as ~3,400 *M. birostris*, but actual landings are likely much higher:

- Directed and organized harpoon fisheries on both coasts of India are reported to land large numbers of *M. birostris* but are not represented in fisheries data.

- Additional ports in Indonesia, other than those documented in this report, have been observed to land *M. birostris* regularly but also are not represented in fisheries data.

- Potentially large fisheries for *M. birostris* in Africa have been reported, but again little to no landings data is available.

- Manta and mobula rays are frequently mentioned as bycatch in industrial and artisanal fisheries, especially in purse-seine and gillnet fisheries for tuna, however, these landings are not recorded separately by species creating further gaps in landings data.

- *M. birostris* are large and tend to feed close the surface, making them extremely vulnerable to opportunistic hunting by coastal fishers. A quick Internet search reveals images of captured manta rays from many countries, but no data on these fisheries are available.

Large declines have been reported following increases in directed fishing for *M. birostris*:

- **Indonesia** - Large declines in number and size of manta ray catches reported over the past decade.

- **Sea of Cortez, Mexico** - Disappearance following intense fisheries in the 1980s.

- **Sri Lanka** - Fishermen reported declines in manta ray catches over the past five years as targeted fishing pressure has increased.

- **India** - Manta catches have declined in several regions, including Kerala, along the Chennai and Tuticorin coasts and Mumbai, despite increased fishing effort.

- **Philippines** - Fishermen reported a 30% decline in manta ray landings from the 1960s to 1990s, following directed fisheries there.

- **Thailand** - Dive operators in the Similan Islands have witnessed increased fishing for manta rays, even in Thai national marine parks, and have reported steep declines in manta ray sightings.

While there are no worldwide population estimates for *M. birostris*, one can put the estimated landings figure into context based on the maximum number of *M. birostris* individuals recorded in some of the largest known aggregation sites:

1. Mexico’s Revillagigedos Islands (~350 animals),
2. Ecuador Islas de la Plata (~300 animals),
3. Southern Mozambique (~600 animals population estimate).

The implications are serious: each year fisheries are extracting 6-12 times the number of mantas documented in these sites, which are the largest known aggregations of this species.

In addition, manta ray researchers from Western Australia report that sightings of *M. birostris* have dropped precipitously over the past ten years. Tagging data from whale sharks tagged in Western Australia reveals migration routes that frequently pass directly through known Indonesian manta ray fisheries, where whale sharks are also harpooned with regularity. The seasonal correlation between the *M. birostris* and whale sharks, their migration through confirmed Indonesian fisheries areas, and the dramatic decline in both species in Western Australia over the past decade, suggest that the Indonesian fisheries may be having a significant impact on *M. birostris* populations.

The targeting of juvenile *M. birostris* in a potential manta ray “nursery” ground close to shore in southern Sri Lanka, possibly the first *M. birostris* nursery reported anywhere in the world, poses yet another serious conservation concern.
MANTA ALFREDI

Prior to the recent re-evaluation and splitting of the Manta genus, all manta rays were identified as *M. birostris*. It is often not possible, therefore, to determine if published landings referring to *M. birostris* might actually be *M. alfredi* or a mix of the two species in some cases. What is confirmed is that no landings of *M. alfredi* were observed in investigations of fisheries in Lamakera and Lombok in Indonesia or in Sri Lanka.

In Mozambique it is estimated that 20 to 50 *M. alfredi* are taken by subsistence fishermen annually along a ~100 km area. An ongoing observational study on manta abundance in Southern Mozambique also reports an 80% decline in *M. alfredi* over the last 9 years.

Local fishermen are known to opportunistically target animals belonging to small *M. alfredi* populations around islands throughout the western and central Pacific. Because of their isolation and low numbers, these local populations of *M. alfredi* are extremely vulnerable to any fishing pressure.

MOBULA SPECIES

Mobula rays are subject to even greater global fisheries pressure, yet we know even less about the state of their populations. The Sri Lankan and Indian fisheries combined land more than 79,000 mobulas per year, with Sri Lanka accounting for more than 50% of recorded global landings of over 94,000 animals. In the Sri Lanka fishery, the most frequently landed species are *M. japonica* (~87%), followed by *M. tarapacana* (~12%), and *M. thurstoni*, (~1%).

Factors including illegal, underreported, and unrecorded fisheries suggest that the total number of mobula rays landed in global fisheries is likely to be significantly greater than the ~94,000 accounted for in the aggregate fisheries data. For example, there are numerous anecdotal reports of large numbers of mobulas landed in parts of Mexico, despite laws prohibiting their harvest and no available landings data.

In Sri Lanka and Indonesia (Lombok and Lamakera), fishermen and traders reported declines in catches of mobula rays over recent years as targeted fishing pressure has increased.

Mobulid catches have declined in several regions of India, including Kerala, along the Chennai and Tuticorin coasts and Mumbai, despite increased fishing effort.

Swordfish fisheries in the Aegean and Levantine Seas also report bycatch of *Mobula mobular*, a species endemic to that region and classified by the IUCN as “Endangered.”
TABLE 3. FISHERIES FOR MANTA AND MOBULA RAYS – DIRECTED AND BYCATCH

<table>
<thead>
<tr>
<th>COUNTRY</th>
<th>REFERENCE</th>
<th>YEAR GILL RAKER TRADE</th>
<th>MANTAS/YR</th>
<th>MOBULAS/YR</th>
<th>ALL MOBULIDS/YR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sri Lanka</td>
<td>Fernando and Stevens 2011</td>
<td>2011</td>
<td>Yes</td>
<td>1,055</td>
<td>55,497</td>
</tr>
<tr>
<td>India</td>
<td>Raje et al. 2007</td>
<td>2003-04</td>
<td>Yes</td>
<td>690</td>
<td>24,259</td>
</tr>
<tr>
<td>Peru</td>
<td>Planeta Oceano 2011</td>
<td>2011</td>
<td>No</td>
<td>150</td>
<td>8,000</td>
</tr>
<tr>
<td>Indonesia</td>
<td>Setiash ‘12, White et al. ‘06b</td>
<td>2011, ’01-5</td>
<td>Yes</td>
<td>1,320</td>
<td>3,595</td>
</tr>
<tr>
<td>China</td>
<td>Hilton 2011</td>
<td>2011</td>
<td>Yes</td>
<td>100</td>
<td>2,000</td>
</tr>
<tr>
<td>W. Central Pacific</td>
<td>Molony 2005</td>
<td>1994-94</td>
<td>DD</td>
<td>DD</td>
<td>DD</td>
</tr>
<tr>
<td>Brazil</td>
<td>Perez and Wahlrich 2005</td>
<td>2001</td>
<td>DD</td>
<td>DD</td>
<td>DD</td>
</tr>
<tr>
<td>Mauritania</td>
<td>Zeeberg et al. 2006</td>
<td>2001-04</td>
<td>DD</td>
<td>DD</td>
<td>620</td>
</tr>
<tr>
<td>Indian Ocean</td>
<td>Pianet et al 2010</td>
<td>2003-08</td>
<td>DD</td>
<td>36</td>
<td>325</td>
</tr>
<tr>
<td>Philippines</td>
<td>NPOA-Sharks 2009</td>
<td>2007</td>
<td>DD</td>
<td>3</td>
<td>30</td>
</tr>
<tr>
<td>New Zealand</td>
<td>Paulin et al. 1982</td>
<td>1975-81</td>
<td>No</td>
<td>DD</td>
<td>DD</td>
</tr>
<tr>
<td>South Africa</td>
<td>Young 2001</td>
<td>2001</td>
<td>DD</td>
<td>20</td>
<td>DD</td>
</tr>
<tr>
<td>TOTALS</td>
<td></td>
<td></td>
<td>3,409</td>
<td>94,286</td>
<td>100,053</td>
</tr>
</tbody>
</table>

Note 1: Most fishery figures listed are extrapolated estimated catches. Refer to Heinrichs et al. 2011 for explanation of assumptions and calculations used to estimate total landings.

Note 2: The figures listed do not include unverified, but potentially significant fisheries in Mexico, Africa and Thailand. Bycatch figures are notoriously underreported or incorrectly classified, and therefore these numbers are expected to be substantially higher. Much of the bycatch from high seas fisheries is likely to be discarded and may not go into the gill raker trade.

DD = Data Deficient
MARKET AND TRADE INVESTIGATIONS

Market investigations were conducted in five locations considered to be the primary centers for the Chinese dried seafood trade: Singapore, Hong Kong (Shueng Wan District), Macau, Taiwan (Taipei, Taichung and Kaohsiung), and Mainland China (Guangzhou). Investigators canvassed dried seafood and Traditional Chinese Medicine (TCM) business districts in each location, interviewed sellers and obtained gill raker samples for DNA testing.

MARKET AND TRADE FINDINGS

Guangzhou, Guangdong Province in Southern China has been clearly identified as the epicenter for the trade and consumption of gill rakers, representing as much as 99% of the global market. Just one large supplier in Guangzhou may sell three to four times the volume of gill rakers in one month as all the secondary markets of Hong Kong, Macau and Singapore combined sell in an entire year. These secondary markets, though much smaller, still play an important role in supporting the trade. There are currently no laws regulating the trade in gill rakers in any of the locations surveyed. The countries most frequently identified as primary sources for the gill rakers were: Indonesia, India (possibly including Sri Lanka) and China.

Market investigations revealed that approximately 98% of the stock in stores was large gill rakers (\textit{M. birostris}), 40% medium gill rakers (\textit{M. tarapacana} and juvenile \textit{M. birostris}) and 30% was comprised of smaller gill rakers (various Mobula species). \textit{M. alfredi} (reef mantas) appear to be absent from the market samples (confirmed through DNA testing). Investigators also found whale shark gills (confirmed through DNA testing) in some shops that were being marketed as manta gills.

Almost without exception, retailers, wholesalers and processors of manta and mobula ray gill rakers reported dramatic decreases in supply and increasing prices, especially for \textit{M. birostris} gill rakers. Many suppliers reported price increases of 100% over just the past few years.

Market analysis yields total annual gill raker trade volume in excess of 61,000 kg (and perhaps as high as 80,000 kg) with an estimated value of US$1.3 million per year. In comparison, the annual shark fin trade has been estimated at a minimum of US$400–550 million60. As such, the gill raker trade amounts to less than 3% of the value of the shark fin trade and does not contribute significantly to the Chinese dried seafood and TCM industries.

ESTIMATING THE VALUE OF THE MARKET

The Hilton 2011 investigations found that the median sale price in Guangzhou was US$251/kg (and up to US$500/kg) for large gill rakers, US$172/kg for medium gill rakers, and US$133/kg for smaller gill rakers. Based on the average estimate of ~ 61,000 kg of gill rakers traded annually, with an estimated 30% coming from \textit{M. birostris}, sold at an average of US$251 per kg (US$15,600,845), plus an estimated 40% coming from medium sized gill rakers sold at an average of US$172 per kg (US$4,217,442) and the remaining 30% comprised of gill rakers from the smaller mobula species, sold at an average of US$133 per kg (US$2,441,999), the total retail market for gill rakers can be estimated to be worth, as mentioned above, US$11.3 million per year.

TABLE 4. ESTIMATED MARKETS FOR MANTA/ MOBULA GILL RAKERS TRADED ANNUALLY (Hilton 2011)

<table>
<thead>
<tr>
<th>Market</th>
<th>Low Estimate</th>
<th>High Estimate</th>
<th>Average Estimate</th>
<th>% Market</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guangzhou, China</td>
<td>37,887 kg</td>
<td>80,093 kg</td>
<td>61,208 kg</td>
<td>100.00%</td>
</tr>
<tr>
<td>Singapore</td>
<td>66 kg</td>
<td>279 kg</td>
<td>172 kg</td>
<td>2.8%</td>
</tr>
<tr>
<td>Hong Kong</td>
<td>32 kg</td>
<td>64 kg</td>
<td>48 kg</td>
<td>0.8%</td>
</tr>
<tr>
<td>Macau</td>
<td>12 kg</td>
<td>24 kg</td>
<td>18 kg</td>
<td>0.3%</td>
</tr>
<tr>
<td>Taiwan</td>
<td>0 kg</td>
<td>0 kg</td>
<td>0 kg</td>
<td>0%</td>
</tr>
<tr>
<td>TOTALS</td>
<td>37,887 kg</td>
<td>80,093 kg</td>
<td>61,208 kg</td>
<td>100.00%</td>
</tr>
</tbody>
</table>
Demand for gill rakers is the largest driver for manta and mobula ray fisheries. Anecdotes gathered through investigations and literature searches suggest that gill rakers, which consist of thin filaments that manta and mobula rays use to filter food from the water column, can treat health issues ranging from chicken pox to cancer. Some practitioners claim that gill rakers, known in China as “Peng Yu Sai,” boost the immune system and help purify the body by reducing toxins and fever and enhancing blood circulation. Others claim that gill rakers will remedy throat and skin ailments, male kidney issues, and help couples with fertility problems.

Investigators interviewed TCM practitioners in Southern China, Hong Kong, Macau, and Singapore. TCM refers to an ancient and holistic system of health and healing. Though not historically a part of Traditional Chinese Medicine, industry marketing appears to be pushing gill rakers toward greater acceptance in TCM.

Some TCM practitioners suggested gill rakers as an effective remedy for certain ailments, but none was able to locate a specific reference in TCM texts. One TCM practitioner interviewed reviewed all 6,400 remedies of the official TCM reference manual, and found that Peng Yu Sai was not listed.

Practitioners interviewed admitted that gill rakers were not effective and many alternatives were available. In fact, many young TCM doctors are not even aware of this remedy, indicating that it is not included in current TCM curricula.

The use of gill rakers as a remedy is reported to have been popular in Southern China many years ago, but its use declined. Over the past ten years, however, there appears to have been an effort by traders to revive this remedy and create a new market. Some suppliers in China report an increase in demand for gill rakers. Direct to consumer marketing of this remedy appears to be driving the demand, much like the trend in recent years for pharmaceutical companies marketing drugs directly to the consumer. Because of claims that the product bolsters the immune system, marketing efforts playing on the public’s fear of outbreaks of swine and bird flu and SARS, may also be driving demand.

Belief in the health benefits of consuming gill rakers is largely found in a subset of the older population in Southern China, and to a lesser extent in Macau, Singapore and Hong Kong. Gill rakers are not steeped in tradition or considered “prestigious”. These barriers faced by campaigns to curb consumption of shark fins therefore, do not generally apply with gill rakers.

Consumers and even many sellers of gill rakers are not aware that the product comes from manta or mobula rays, particularly since the name - “Peng Yu Sai” or “fish gills” – is not associated with manta or mobula rays.
THE GLOBAL THREAT TO MANTA AND MOBULA RAYS

GILL RAKERS
- USED IN PSEUDO-MEDICINAL HEALTH TONIC
- UP TO US$500/KG IN CHINA

CARTILAGE
- USED AS A SHARK CARTILAGE SUBSTITUTE
- NOMINAL VALUE

MEAT
- USED IN SATAY, FAKE SCALLOPS, ANIMAL FEED
- AS LITTLE AS US$20 PER RAY IN INDONESIA

SKIN
- USED AS LEATHER FOR BOOTS, WALLETS
- NOMINAL VALUE

TOURISM - US $1 MILLION OVER ITS LIFETIME
Manta and mobula rays are highly intelligent and social animals that have a broad appeal to divers and snorkelers. Providing encounters with these graceful animals offers a potentially lucrative and sustainable alternative to harvest in many areas. As a result, tourism has developed around seasonal manta and mobula ray aggregations in many parts of the world.

A survey of dive operators in manta ray range states reveals that manta rays are frequently the #1 attraction to divers and are consistently ranked in the top three of marine life that divers most often ask to see. These operations bring millions of dollars in tourism revenue annually to their local communities.

In Western Australia’s shallow Bateman Bay on Ningaloo Reef, visitors come on snorkeling tours more eager to see manta rays than whale sharks. Surveys conducted in the Maldives indicated that tourists are willing to pay the highest surcharge to see manta rays, even more than for turtles or sharks. In Mozambique, diving, particularly to see whale sharks and rays, motivated 76% of tourists to visit the country.

The ‘Million Dollar Manta’ In Yap, where dive tourism is based almost exclusively on manta ray encounters, the annual value of manta ray dives is estimated to be US$4 million. With an estimated local population of 100 manta rays, each living an estimated 40+ years, each of these manta rays is worth as much as US$1 million over its lifetime!

In a fish market, on the other hand, brings a one-time income of US$40–$500 depending on the manta’s size. Based on data from only seven locations, the value of manta ray dive tourism is estimated at over US$27 million per year. These figures do not account for revenue generated in many popular diving locations in Mozambique, South Africa, Indonesia, Mexico, Ecuador, Costa Rica, Brazil, Japan, Solomon Islands, Azores, Australia, New Zealand, the Philippines, and Thailand. Global manta tourism may exceed US$50 million in direct dive-operation revenues annually, and with associated expenditures it may contribute as much as US$100 million. Additional opportunities exist globally for new tourism operations.

Manta ray tourism can provide ongoing sustainable income to communities for generations to come, while the gill raker trade represents short-term profits for a handful of foreign traders. Some poor fishing communities in India, the Philippines and Indonesia have shifted from hunting whale sharks to developing successful eco-tourism industries, changes that have revitalized these communities while also protecting these iconic animals. The same opportunities exist for community-based tourism development centered on manta and mobula rays. Like whale sharks, manta and mobula rays offer significant tourism appeal, and present potentially large and sustainable financial benefits to coastal communities ... if kept alive.

TABLE 5. INDUSTRY VALUES OF MANTA TOURISM

<table>
<thead>
<tr>
<th>LOCATION</th>
<th>SPECIES</th>
<th>ANNUAL REVENUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kona, Hawaii</td>
<td>Manta Sp.*</td>
<td>US$ 3.4 million¹</td>
</tr>
<tr>
<td>Ningaloo, Australia</td>
<td>M. alfredi</td>
<td>US$ 3.8 million²</td>
</tr>
<tr>
<td>Nusa Penida, Indonesia</td>
<td>M. alfredi</td>
<td>US$ 3.5 million³</td>
</tr>
<tr>
<td>Palau</td>
<td>M. alfredi</td>
<td>US$ 2.5 million⁴</td>
</tr>
<tr>
<td>Republic of Maldives</td>
<td>Manta Sp.*</td>
<td>US$ 8.1 million⁵</td>
</tr>
<tr>
<td>Socorro, Mexico</td>
<td>M. birostris</td>
<td>US$ 5 million⁶</td>
</tr>
<tr>
<td>Yap</td>
<td>M. alfredi</td>
<td>US$ 4 million⁷</td>
</tr>
</tbody>
</table>

¹ Mainly M. alfredi; ² MPFR 2007; ³ F. McGregor pers. comm.; ⁴ J. Denby pers. comm., T. Boroński, pers. comm.; ⁵ Anderson et al. 2010 (2006–7); ⁶ Dive operator interviews, website research; ⁷ R. Acker pers. comm.

©2011 MANTA RAY OF HOPE
With a vulnerable life history and potential for over-harvesting throughout their range, manta and mobula rays urgently need international protection.

International: Most of these rays migrate through international waters, and the international trade in their gill rakers is a primary threat to their survival. Listing under the Convention on International Trade in Endangered Species (CITES) would be the most effective conservation tool. In 2010, the US CITES delegation considered proposing all mobulids for listing on CITES Appendix II, but did not submit the proposal due to insufficient data on fisheries and trade.

In November of 2011, the Government of Ecuador’s proposals to the Convention on the Conservation of Migratory Species of Wild Animals (CMS) to add M. birostris to Appendices I and II of the treaty were overwhelmingly approved, thereby obligating all M. birostris range states that are party to CMS to endeavor to provide immediate protection for this species. Even though many range states with manta fisheries are not party to this convention (Indonesia, for example), the addition of M. birostris to the CMS Appendices marks the first international agreement to protect manta rays.

Table 6. Local and Regional Legal Protection / Conservation Measures*

<table>
<thead>
<tr>
<th>LOCATION</th>
<th>SPECIES</th>
<th>LEGISLATION / CONSERVATION MEASURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia (Western)</td>
<td>Manta</td>
<td>Fishing; harassment prohibited in marine parks</td>
</tr>
<tr>
<td>Croatia</td>
<td>Mobula mobular</td>
<td>Law of the Wild Taxa 2006 Strictly prohibited</td>
</tr>
<tr>
<td>Ecuador</td>
<td>Manta / Mobula</td>
<td>Ecuador Official Policy 095, 2010 - Bill 24-913 prohibiting sale/trade in ray parts 2011</td>
</tr>
<tr>
<td>Guam, USA Territory</td>
<td>Manta</td>
<td>Full ban on fishing elasmobranches 2010</td>
</tr>
<tr>
<td>Honduras</td>
<td>All elasmobranches</td>
<td>Regency Bupati Decreto October 2010 - Exports of all ray products banned 1995</td>
</tr>
<tr>
<td>Indonesia – Raja Ampat</td>
<td>Manta / Mobula</td>
<td>Sch. VI Absolute protection</td>
</tr>
<tr>
<td>Maldives</td>
<td>Mobula mobular</td>
<td>NOM-092-PESC-2006 Prohibits harvest and sale</td>
</tr>
<tr>
<td>Mexico</td>
<td>Manta/mobula spp.</td>
<td>Wildlife Act 1975 Schedule 7A (absolute protection)</td>
</tr>
<tr>
<td>Philippines</td>
<td>Manta</td>
<td>FAO 1991, 1993 Whole Shark and Manta Ray San</td>
</tr>
<tr>
<td>Revillagigedo Islands</td>
<td>Manta</td>
<td>Marine Protected Area</td>
</tr>
<tr>
<td>USA – Florida</td>
<td>Manta</td>
<td>FL Admin Code 68B-44.008 – no harvest</td>
</tr>
<tr>
<td>USA – Flower Garden Banks</td>
<td>Manta</td>
<td>US Dept of Commerce 2010 – no harvest</td>
</tr>
<tr>
<td>USA – Hawaii</td>
<td>Manta</td>
<td>H.R. 366 2009 – no harvest or trade</td>
</tr>
<tr>
<td>Yap (FSM)</td>
<td>Manta</td>
<td>Manta Ray Sanctuary and Protection Act 2008</td>
</tr>
</tbody>
</table>

* The above is not a complete list of all marine protected areas where mobulids are protected.
INVESTIGATIONS OF LARGEST KNOWN MOBULID FISHERIES

INDIA

India has the second largest elasmobranch fishery in the world, with reported landings of 70,000 per year, representing ~10% of the global elasmobranch catch. While the full extent of mobulid landings in India is not known, numerous published references document significant manta and mobula ray landings from the Indian coast, gillnet and longline fisheries. The available fishery reports account for at least 650 manta rays (M. birostris) and an estimated 24,260 mobula rays (various species).

Given the vast size of the Indian travel and gillnet fleets targeting sharks, skates and rays, and limited fisheries oversight, the landings of mobulids in these fisheries may be significantly underreported. Likewise, with well-organized harpoon fisheries for M. birostris reported on both east and west coasts of India with no landings data available, there is again the strong possibility of significant landings not accounted for in the fisheries data. To properly estimate total manta and mobula ray landings in India, further investigation is required.

PERU

In March and September of 2011, Planeta Oceano, conducted rapid assessments of the mobulid fisheries along the north coast of Peru in the Tumbes & Piura regions. One family of fishermen (one boat crewed by a father and his grown son) directly targets M. birostris, while two other fishermen are said to occasionally target mantas. The family estimates annual total landings of 100 to 120 M. birostris, with other targeted and incidental catches estimated at 50 to 100 manta rays, for a total of about 220 M. birostris. Mobula landings are estimated at ~8,000 based on observed catches, bringing total mobulid landings to ~8,350 per year.

Across the border in Ecuador, manta and mobula species are protected under Ecuadorian law, but these same animals are targeted when they migrate south to Peru. Because the family that targets manta rays has expressed willingness to participate in future conservation programs for manta rays, the outlook for protection here (at least for manta rays) is promising. Peru is also a party to the CMS Convention, which now lists M. birostris on its Appendices I and II and obligates parties to pursue measures to protect this species.

INDONESIA

Directed manta and mobula ray fisheries are confirmed to exist in Lombok, Lamakera, Lamalera, as well as in other villages in Aker and perhaps in other areas 89. Manta and mobula rays are also abundant as bycatch in local gillnet fisheries for tuna, and have been observed at markets in Pelabuhanratu in West Java, Cilacap in Central Java, and Kedunganan in Bali. Species found in Indonesian fisheries include M. birostris, M. alfredi, M. j passica, M. torquacausa, M. thurstoni, and M. Judgei 90. Landings estimates from all Indonesian mobulid fisheries combined are more than 1,500 manta rays (M. birostris) and more than 3,500 mobula rays (various species). Indonesia appears to have the largest landings of M. birostris of any of the documented fisheries.

Lamakera Investigation: In June to July 2011, a rapid assessment of the fishery was conducted in Lamakera, a village on Lambata Island in the Aker region. This investigation relied on direct observation and interviews with a wide variety of community members from Lamakera and surrounding villages, and is the first known assessment of the CMS Convention's description of the fishery published in 2002.

When mantas are spotted in the area, villagers go out en-masse, aided by mobile phones to facilitate communications on the locations of the sightings. As soon as a boat gets into range of a manta, a crewmember plunges a steel, barbed spearhead attached to a long bamboo shaft into the manta ray's back. A rope is connected to the barbed spearhead, which releases from the shaft and line is given out for the manta ray to run. The manta ray takes about a half hour to tire during which time the crew chants an ancestral song they believe will stop the manta from escaping. They then long knives into the head and region and then push a long metal rod into the heart or head to kill the animal. The body is secured with ropes and rafts and the entire crew hauls the manta ray onboard, where they cut off the pectoral fins, remove the gills and cut off the head.

Lamakera’s annual catch for 2010 based on all sources interviewed was 660 manta rays (M. birostris) and 330 mobula rays (M. torqua causa), for a combined catch of 990 mobulids. The catch trend appears to have declined significantly since the Dewar 2002 estimates of 1,030 to 4,490 manta rays landed each year, a strong indication that overfishing has significantly depleted manta ray populations that migrate along this corridor.

Lombok Investigation: The Lombok assessment of manta and mobula ray fisheries and trade was conducted in the Tanjung Luar region over six visits during varying seasons in 2007, 2009, 2010, and 2011. Both fishermen and the local processing facility reported that manta and mobula ray catches had declined dramatically in recent years and that the average manta ray size was now less than half of what it used to be. Based on these surveys, approximately 200 manta rays (M. birostris) and 1,000 mobula rays (various species) are landed annually in this port. A survey conducted in Tanjung Luar from 2001 to 2005 reported landings of ~1,660 mobulids per year and sales of adult manta rays from 4.4 to 4.8 m EWD, confirming the fisherman’s reports of decreases in both numbers and size of manta rays landed over the past few years.

Fishermen and processors indicated that the gills were the primary value, with mantle gills more valuable than the smaller mobula gills. Trade routes point to Chinese buyers in Surabaya and Jakarta. The rest of the animal is of nominal value and without the gill raker revenue, the income from meat and skin sales would not even cover the fuel expended to hunt these animals.

In Lamakera, where villagers have hunted these animals for many years, tradition also plays a role in the ongoing exploitation of manta and mobula rays, even prior to the gill raker trade. The excitement of the hunt and of returning with a large conquered sea animal was evident in recent investigations. The advent of the gill raker trade, however, transformed this fishery from a small-scale artisinal practice to a large-scale commercial enterprise.

©2011 MANTA RAY OF HOPE
In 2011, investigators visited a shark processing plant in Puqi, Zhejiang Province of China, which had been suspected as a major processor of manta and mobula ray gill rakers. This plant processes whole manta and mobula rays shipped from a nearby port in Shiquan, and sells dried gill rakers directly to buyers in Guangdong (estimated 500 kg M. birostris; 1000 kg M. japonica annually). The manta and mobula ray carcasses are sent to a plant in Shangdong, where the meat is ground up for fishmeal and the cartilage is processed to make chondroitin sulfate supplements, for export to Japan and Britain. The plant manager reported that 300 kg of large manta (whole) yields ~2.5 kg of dried gill rakers. Based on conversion calculations (2 kg of dried gill raker per average mature M. birostris and .5 kg per average small mobula), an estimated 100 manta rays (M. birostris) and 2,000 mobula rays (M. japonica) are processed annually in this port.

AFRICA

While little published data is available for African mobulid fisheries, significant threats to manta and mobula rays may exist in several countries on the east and west coasts of Africa.

In Mozambique it is estimated that 20 to 50 M. alfredi are taken by subsistence fishermen annually just along a ~ 100 km area. An extensive and ongoing observational study on manta abundance in Southern Mozambique also reports an 80% decline in Manta alfredi over the last 9 years. In 2003 and 2004 there was an 87% chance of seeing a manta ray on a dive, but sighting frequency has steadily declined over time to only a 33% chance of seeing mantas on dives in 2011. The number of individuals seen per dive has declined drastically as well, from an average of 6.8 individuals in 2003 and 2004 to 0.6 individuals per dive in 2011.

In Ghana, Dixcove is known for its seasonal harvest of manta rays; and a year round large mesh drift gillnet fishery targeting tuna, sharks, billfish, manta rays and dolphins, has also been reported. Additional investigation to determine the extent of fisheries and trade for manta and mobula species in Africa is critically needed.

THAILAND

Dive operators in the Similan Islands located in the Andaman Sea, have witnessed increased fishing for manta and mobula rays, even in Thai national marine parks, and have reported steep declines in manta ray sightings. Review of the largest manta ray photo identification database for this region has revealed a significantly higher proportion of individuals with net and line injuries than anywhere else in the world, except for mainland Ecuador (due to illegal fishing for wahoo in a major M. birostris aggregation area). This photographic evidence strongly supports anecdotal reports that fishing is having a major impact on the manta ray population in the area.

These observations present the possibility of significant population declines of M. birostris and M. alfredi in the Similan Islands due to targeted fishing. With fisheries data lacking on manta and mobula ray landings, further investigation is required to properly assess the extent and impact of mobulid fisheries in Thailand.

PHILIPPINES

Some areas, such as Pamilacan Island in Bohol, have a long history of hunting manta rays along with whales and whale sharks. Following the passage of a ban on capturing dolphins and whales in late 1992, whaling communities in the Bohol Sea area shifted more of their efforts to whale sharks and manta rays, and in 1998 twenty six villages were involved in manta and mobula ray fisheries. During the 1995-6 season, 1,200 manta and mobula rays were landed. Interviews with fishermen during a 1996 survey revealed that manta ray catches had declined by 50% over the past 30 years.

Today the ban on catching and selling of manta rays is still in place, but enforcement varies and the cultural practice of eating manta ray meat persists in some areas. Traders in Hong Kong continue to report mobula species as a supplier of dried gill rakers, indicating that an active gill raker trade may still continue in the Philippines. Further investigation is required to properly assess the extent of mobulid fisheries and the connection to the gill raker trade.

ECUADOR

During the first half of 2010, prior to Ecuador’s ban on fishing manta and mobula rays, landings of 0.096 mobula rays were recorded. The Ecuadorian government has been a leader in manta and mobula conservation, evidenced by the strict ban on the landing and sale and mobula rays in Mexico is needed. Bycatch may be significant due to the high volume of commercial fisheries using drift gillnets and longlines. No definitive evidence of a gill raker trade has been reported in Mexico, but further investigation is warranted to confirm this.
RESOURCES (CONTINUED)

POPULATIONS OF MANTA AND MOBULA RAYS ARE FACING EXTREME THREATS.

WE MUST ACT BEFORE THEY ARE LOST FOREVER.

WWW.MANTARAYOFHOPE.COM